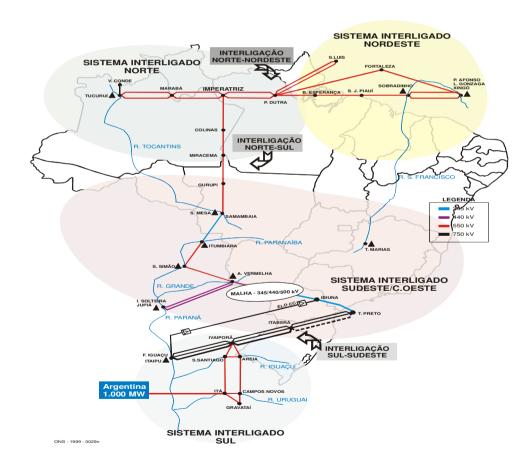


### Integrated Water and Energy Planning – The Case of Brazil






Luiz Maurer, The World Bank Zaragoza, Spain September, 2008

## This presentation will address the following topics

- Power system in Brazil
- Growing conflicts for the use of water
- Ongoing changes in the institutional framework
- Hydro in jeopardy?
- Light at the end of the tunnel?

## Brazil has a large power system, heavily dependent on hydroelectricity

- 110 GW
   400 TWh
   85% Hydro
   Estimated
- Estimated potential of 260 GW
- Extensive network, four areas



The perception of Brazil as a water paradise – true, but abundant waters far from consumption centers

- Total river flows 260 k m³/s
  - 92% in six large basins
  - 80% Amazon basin
- But poorly distributed, on a per capita.year basis
  - Amazon 500 k m<sup>3</sup>
  - Driest areas 1.6 k m<sup>3</sup>
  - National average 30 k m3
- Large, populated areas (NE) water (and energy) stressed
  - Semi-arid region
  - Subject to vagaries of rainfall
  - Cyclical droughts

## Starting late 90's, power sector has seen major institutional and regulatory reforms

- Competition in generation and retail, with all concessions granted competitively
- Energy auctions mandatory to captive markets
- Most D assets privatized
- Most new G and T assets built by private sector
- Reliable, improved quality of service and coverage
- Financially sound, cost-recovery tariffs
- Attractive to private capital, the investor by default – domestic and foreign

# In the past, power was on the driver's seat in planning hydro resources

- Relative importance and potential
- Capable institutions
- Existing institutional and regulatory framework
- Until late 1990's, water planning under Ministry of Energy
- DNAEE in charge of power (and water)
- Plans were designed to maximize power production
- Oftentimes to the detriment of environmental and social concerns
- Multiple uses an afterthought

## Late 1990's important institutional

changes

Law 9.433/97 created a new paradigm

- National system to manage hydro resources
- Creation of specific regulatory agency (ANA) in 2000
- Water resources to be planned at basin level, and shared among multiple users
- Concessions for the use of water resources
- Mechanisms to mediate conflicts
- Charge for the use of water
- Directionally clear, but slow implementation

### Not so peaceful co-existence between water and electricity

- For many years, 900 MW Henry Borden hydro plant has restricted operation – **polluted** Tiete river cannot be diverted through Sao Paulo to the Billings System lakes
- > 2/3 of Paraiba do Sul river flow being diverted to supply potable water to Rio de Janeiro, chronically affecting reservoirs levels and hydro production
- During 2001 energy rationing, frustrated attempt from the power sector to maximize production of Ilha Solteira, shutting down Pereira Barreto Channel, vital for **navigation**
- Huge Sobradinho dam in Sao Francisco river being overdrawn to enable irrigation – needs to be recovered
- Tense disputes, seldom planned at the outset, need for administrative mediation, questionable best economic use of water

## The situation will likely get worse, before it gets better

- Increase in population and industrial demand for water supply in large cities
- ✤ ¾ of the concessions granted now are for irrigation
- River flows in some areas under historical averages (e.g. Sao Francisco)
- Mega project (under discussion) to divert 1/3 of the water from Sao Francisco, to irrigate semi-arid regions
- This river is the major source of power to supply the Northeast, an energy constrained area – no more hydro available
- Growing need for power and to replenish reservoir levels and avoid 2001 crisis

## Power system has been operated taking into

### account multiple uses as binding constraints

- Power system is operated centrally as a tight pool model by a single ISO
- Objective function is to minimize the cost of generation (given transmission constraints)
- Criterion for unit commitment economic "cost of water" but just from a power sector perspective
- Multiple uses are taking into account as "constraints" – e.g. flood control, maximum and minimum flows, must run plants, etc.
- Alternative uses are not part of the economic equation only possible if payment for use of water is implemented, reflecting scarcity

## Dispatch rules may accommodate multiple uses

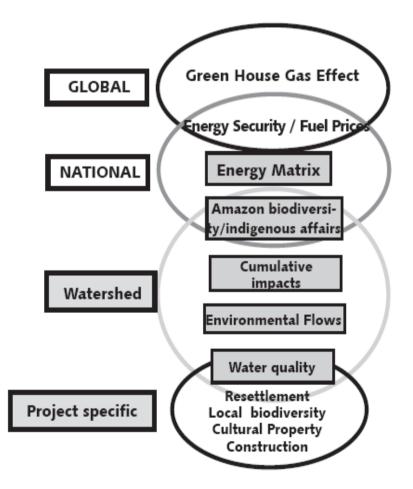
- Central dispatch & optimization in a hydro-thermal system creates volatile cash flows for individual generators
- To address this problem, each generator owns a "share" of total firm and secondary production – which remains relatively stable over time (MRE rule)
- Any energy sub-optimization (for example, due to multiple uses) is therefore socialized
- Not an ideal solution, but it helps reduce uncertainties and accommodate trade-offs between energy and other uses
- But model will collapses if there is a significant reduction in hydro production – e.g. rationing in 2001, or diversion of Sao Francisco River – for all players in generation – will the private sector balk off?

# Wake up call – the power sector has realized that it is no longer in the driver's seat

- Clear manifestation getting licenses for new hydro plants has become a "nightmare"
  - Long delays averaging one year, but may be much longer
  - Uncertainty and subjective
  - Constraining hydro generation options for expansion
- Gap has been bridged by expensive, polluting thermal generation –

e.g. profile in the first energy auctions

|      | Hydro                  |                            | Thermal                |                             |
|------|------------------------|----------------------------|------------------------|-----------------------------|
|      | Volume<br>(Average MW) | Average Price<br>(R\$/MWh) | Volume<br>(Average MW) | A verage Price<br>(R\$/MWh) |
| 2008 | 71                     | 106,95                     | 561                    | 132,26                      |
| 2009 | 46                     | 1 13,89                    | 855                    | 129,26                      |
| 2010 | 891                    | 1 14,83                    | 862                    | 121,81                      |


### A recent World Bank study has

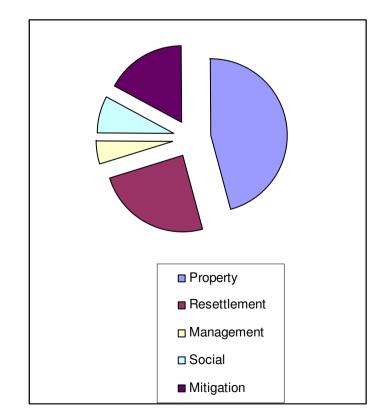
## revealed multiple layers of complexity

- Inventory studies not up-to-date
- Confusing institutional roles between players, states, Federal government agencies
- Cumbersome, lengthy evaluation process by IBAMA - oftentimes biased by extremism
- Excessive power from Public Prosecutor's Office
- Lack of policy trade-offs between environmental concerns and need for energy
- Difficult to address in the absence of an efficient allocation process, grounded on economics
- Projects examined individually not strategically



## And recommended an integrated approach to enhance power sector planning




## Identifying clear opportunities to a more effective planning process

Opportunities for Strategic Planning in the Brazilian Hydropower Sector

| Level   | Definition                                                                                                                                                                   | Oportunities Available                                                                                                  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Policy  | A general course of action or a proposal for a general<br>course of action that a government is seeking or may<br>seek and which can guide the decision-making pro-<br>cess. | Definition of Energy Matrix<br>National Water Resources Plan National<br>Environment Policy                             |  |
| Plan    | A design or strategy with a specific vision, often with co-<br>ordinated priorities, options and measures for designing<br>and implementing policies.                        | Strategic Plans for Water Resources<br>and River Basins;<br>National Energy Plan                                        |  |
| Program | A coherent and well-organized schedule or timeframe<br>of commitments, proposals, instruments and/or activi-<br>ties for designing and implementing policies.                | 10-Year Energy Expansion Plan<br>Integrated Environmental Assessment<br>at the river basin level;<br>River Basin Plans. |  |



### The absolute cost of compliance is not a major hurdle – but uncertainty may scare investors in generation



•

- Total Costs (US\$ 130/kW)
  - Flora Fauna Degraded Areas Water Quality Reservoir Cleaning Others

Mitigation Costs (US\$18/kW)

## A particular challenge is to develop hydro

### resources in the Amazon region

- There is a baggage on poor developments in the region
  - Projects implemented without due concern for environmental aspects e.g. Balbina Hydro (serving the city of Manaus)
  - Old project design only to maximize generation (e.g. Kararao, in the Xingu River)
- Starting in the 80's enhanced concerns, democratic process and sector capacity (Eletrobras) to deal with environmental and social issues
- There are "good and bad projects" a change in mindset has enabled the country to find (and improve) good ones
  - 6 GW on Madeira River recently granted, very friendly
  - Project in the Xingu river completely revisited, much more friendly
  - Trade-offs between output and impact mastered by the private sector in the Uruguay river (Ita & Machadinho)

### Who should be doing what?

- Someone has to look at multiple uses in an integrated way
- Ideally, one single agency
- However, in the case of Brazil, power sector preempting water uses DNAEE
- Creation of ANA under another Ministry was the right decision
- Decision making process now involving several Ministries
  - Conflicts take longer to be resolved
  - Perhaps a necessary evil, given history and dynamics
- Different organization approaches may be required in different countries

## Perhaps more important – which coordination mechanisms?

- Certainly one that looks across multiple uses "organization follows processes"
- With an effective conflict resolution process (e.g, mediation or arbitration) ANA playing a key role
- Ideally, one that takes economic value of water accordingly
- Best practice way that Brazil priced energy during the 2001 energy crisis – based on the value of water, conveyed to all end customers
- However, not uniform approach to other competing uses, such as navigation, sanitation, potable water, etc.
- Directionally, pricing is the best way to allocate a scarce resource with proper safety nets in place



## Final remarks ...

- Scarcity and multiple uses of water have challenged power sector status as the single owner of those resources
- New institutional (albeit incomplete and confusing) framework has supported a new multiple use, strategic mindset
- Power sector has evolved in finding good projects and make them even better, still at competitive costs
- This attitude is key to enable further development of hydro resources

   the fuel of choice (including in the Amazon region) co-existing
   with multiple uses of water
- Sustainability involves supply and demand side solutions including rationalization in the end use of water and electricity
- The 2001 power crisis in Brazil is an international best practices on how conservation and efficient use of scarce resources have a major impact on the security of soppy